PGEgaHJlZj0iaHR0cHM6Ly9oeXVuZGFpLmh1L21vZGVsbGVrL2lvbmlxLTUtZmFjZWxpZnQvIiBvbmNsaWNrPSJqYXZhc2NyaXB0OndpbmRvdy5vcGVuKCdodHRwczovL2h5dW5kYWkuaHUvbW9kZWxsZWsvaW9uaXEtNS1mYWNlbGlmdC8nLCAnX2JsYW5rJywgJ25vb3BlbmVyJyk7IHJldHVybiBmYWxzZTsiPjxwaWN0dXJlPjxzb3VyY2Ugc3Jjc2V0PSJodHRwczovL3ZpbGxhbnlhdXRvc29rLmh1L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDI0LzA5L2h5dS1rYW1wYW55b2staW9uaXE1ZmwtYmFubmVyZWstNjAweDUwMC12Mi5wbmciIG1lZGlhPSIobWF4LXdpZHRoOiA3MDBweCkiPjxzb3VyY2Ugc3Jjc2V0PSJodHRwczovL3ZpbGxhbnlhdXRvc29rLmh1L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDI0LzA5L2h5dS1rYW1wYW55b2staW9uaXE1ZmwtYmFubmVyZWstMTk0MHg1MDAtdjIucG5nIiBtZWRpYT0iKG1pbi13aWR0aDogNzAwcHgpIj48aW1nIHNyYz0iaHR0cHM6Ly92aWxsYW55YXV0b3Nvay5odS93cC1jb250ZW50L3VwbG9hZHMvMjAyNC8wOS9oeXUta2FtcGFueW9rLWlvbmlxNWZsLWJhbm5lcmVrLTE5NDB4NTAwLXYyLnBuZyIgYWx0PSIiPjwvcGljdHVyZT48L2E+
auto
2024. 10. 09. szerda

Napfényből hidrogént? Így működik egy hidrogénpanel

PGEgaHJlZj0iaHR0cHM6Ly9nZGVodS5oaXQuZ2VtaXVzLnBsL2hpdHJlZGlyL2lkPWJRMHdSSWJvaTRmZVE4ZGxYb2dReFpkUy5Ca2dGcGkxTUVpa2oydWNlazMuZjcvZmFzdGlkPW1ndmhlY2RodnVuZGVsZGFsandrbHZiamNoamcvc3RwYXJhbT1ybWtzb3VnbnpyL25jPTAvZ2Rwcj0wL2dkcHJfY29uc2VudD0vdXJsPWh0dHBzOi8vd3d3Lm9wZWwuaHUvYWphbmxhdG9rL29zc3plcy9vcGVsZWxla3Ryb21vc3RhbW9nYXRhcy5odG1sP3V0bV9zb3VyY2U9dmlsbGFueWF1dG9zb2smdXRtX21lZGl1bT1iYW5uZXImdXRtX2NhbXBhaWduPUFzdHJhLWFsd2F5c29uLVZOLUFzdHJhLVBST01PLURJUy1SRVMtUkUmdXRtX3Rlcm09MjAyNC0wNS0wNiZ1dG1fY29udGVudD0xMzAweDYwMCIgb25jbGljaz0iamF2YXNjcmlwdDp3aW5kb3cub3BlbignaHR0cHM6Ly9nZGVodS5oaXQuZ2VtaXVzLnBsL2hpdHJlZGlyL2lkPWJRMHdSSWJvaTRmZVE4ZGxYb2dReFpkUy5Ca2dGcGkxTUVpa2oydWNlazMuZjcvZmFzdGlkPW1ndmhlY2RodnVuZGVsZGFsandrbHZiamNoamcvc3RwYXJhbT1ybWtzb3VnbnpyL25jPTAvZ2Rwcj0wL2dkcHJfY29uc2VudD0vdXJsPWh0dHBzOi8vd3d3Lm9wZWwuaHUvYWphbmxhdG9rL29zc3plcy9vcGVsZWxla3Ryb21vc3RhbW9nYXRhcy5odG1sP3V0bV9zb3VyY2U9dmlsbGFueWF1dG9zb2smdXRtX21lZGl1bT1iYW5uZXImdXRtX2NhbXBhaWduPUFzdHJhLWFsd2F5c29uLVZOLUFzdHJhLVBST01PLURJUy1SRVMtUkUmdXRtX3Rlcm09MjAyNC0wNS0wNiZ1dG1fY29udGVudD0xMzAweDYwMCcsICdfYmxhbmsnLCAnbm9vcGVuZXInKTsgcmV0dXJuIGZhbHNlOyI+PHBpY3R1cmU+PHNvdXJjZSBzcmNzZXQ9Imh0dHBzOi8vdmlsbGFueWF1dG9zb2suaHUvd3AtY29udGVudC91cGxvYWRzLzIwMjQvMDkvb3BlbC1hc3RyYS1zdC0yNDA0MzAtNjUweDMwMC0yLmpwZyIgbWVkaWE9IihtYXgtd2lkdGg6IDcwMHB4KSI+PHNvdXJjZSBzcmNzZXQ9Imh0dHBzOi8vdmlsbGFueWF1dG9zb2suaHUvd3AtY29udGVudC91cGxvYWRzLzIwMjQvMDkvb3BlbC1hc3RyYS1zdC0yNDA0MzAtMTMwMHg2MDAtNS5qcGciIG1lZGlhPSIobWluLXdpZHRoOiA3MDBweCkiPjxpbWcgc3JjPSJodHRwczovL3ZpbGxhbnlhdXRvc29rLmh1L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDI0LzA5L29wZWwtYXN0cmEtc3QtMjQwNDMwLTEzMDB4NjAwLTUuanBnIiBhbHQ9IiI+PC9waWN0dXJlPjwvYT48SU1HIFNSQz0iaHR0cHM6Ly9nZGVodS5oaXQuZ2VtaXVzLnBsL19bVElNRVNUQU1QXS9yZWRvdC5naWY/aWQ9YlEwd1JJYm9pNGZlUThkbFhvZ1F4WmRTLkJrZ0ZwaTFNRWlrajJ1Y2VrMy5mNy9mYXN0aWQ9a25hamhrbm5ob2ZweXlpanVtcHhsbmhxZWhseC9zdHBhcmFtPXhrbWZpa2R1Z3gvbmM9MC9nZHByPTAvZ2Rwcl9jb25zZW50PSIgc3R5bGU9IndpZHRoOjFweCFpbXBvcnRhbnQ7IiAvPg==

A világ évente megközelítőleg 75 millió tonna hidrogént használ fel, amelynek a 99%-a fosszilis energiából származik. Rengeteg hidrogénre van tehát szükségünk már azelőtt is, hogy az energiatárolás egyáltalán szóba kerülne, és szeretnénk, ha ez a mennyiség fenntartható forrásokból származna.

A zöld hidrogén előállításának legismertebb, és ma még szinte egyeduralkodónak számító formája az elektrolízis, amikor is megújuló energiából származó áram segítségével vizet bontunk. A megújuló energia lehet például napenergia, ám a nap fényével más módokon is készíthetünk hidrogént ipari mennyiségben. A következőkben ezekről az alternatívákról fogunk egy rövid áttekintést adni az amerikai Energiaügyi Minisztérium által készített tájékoztató segítségével.

A fotobiológiai módszer

A fotolitikus biológiai rendszerekben a mikroorganizmusok – például a zöld mikroalgák vagy a cianobaktériumok – napfény segítségével oxigén- és hidrogénionokra bontják a vizet. A hidrogénionok közvetlen vagy közvetett úton egyesülhetnek, és hidrogéngázként szabadulhatnak fel. Ennek a módszernek a kihívásai közé tartozik a hidrogéntermelés alacsony sebessége, valamint az a tény, hogy a víz bontása során oxigén is keletkezik, amely gyorsan gátolja a hidrogéntermelő reakciót, és bizonyos koncentrációkban a hidrogénnel keveredve biztonsági problémát jelenthet. A kutatók olyan módszerek kifejlesztésén dolgoznak, amelyek lehetővé teszik, hogy a mikrobák hosszabb ideig termeljenek hidrogént, és növeljék a termelés sebességét.

PGEgaHJlZj0iaHR0cHM6Ly93d3cuZm9yZC5odS9zemVtZWx5YXV0b2stc3plbWVseXN6YWxsaXRvay9lbGVrdHJvbW9zLWV4cGxvcmVyI2V4cGxvcmVyIiBvbmNsaWNrPSJqYXZhc2NyaXB0OndpbmRvdy5vcGVuKCdodHRwczovL3d3dy5mb3JkLmh1L3N6ZW1lbHlhdXRvay1zemVtZWx5c3phbGxpdG9rL2VsZWt0cm9tb3MtZXhwbG9yZXIjZXhwbG9yZXInLCAnX2JsYW5rJywgJ25vb3BlbmVyJyk7IHJldHVybiBmYWxzZTsiPjxwaWN0dXJlPjxzb3VyY2Ugc3Jjc2V0PSJodHRwczovL3ZpbGxhbnlhdXRvc29rLmh1L3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDI0LzEwL2N1dG91dC0yNDA5LWV4cGxvcmVyLWxhdW5jaC1tYWdlbnRhc2t5bmF2LWpwZy0xMjAweDE2MDAtaHUtaHUuanBnIiBtZWRpYT0iKG1pbi13aWR0aDogNzAwcHgpIj48aW1nIHNyYz0iaHR0cHM6Ly92aWxsYW55YXV0b3Nvay5odS93cC1jb250ZW50L3VwbG9hZHMvMjAyNC8xMC9jdXRvdXQtMjQwOS1leHBsb3Jlci1sYXVuY2gtbWFnZW50YXNreW5hdi1qcGctMTIwMHgxNjAwLWh1LWh1LmpwZyIgYWx0PSIiPjwvcGljdHVyZT48L2E+

Egyes fotoszintetikus mikrobák a napfényt használják a szerves anyagok lebontására, hidrogént szabadítva fel. Ezt nevezik fotofermentatív hidrogéntermelésnek. Ennek a folyamatnak a legnagyobb kihívásai közé tartozik a nagyon alacsony hidrogéntermelési sebesség és az alacsony napenergia-hidrogén hatásfok, ami miatt ez a megoldás jelenleg kereskedelmi szempontból nem életképes a hidrogén előállítására.

A kutatók azt vizsgálják, hogyan lehetne a mikrobákat jobbá tenni az energia gyűjtésében és felhasználásában, hogy több energia álljon rendelkezésre a hidrogéntermeléshez, és hogyan lehetne megváltoztatni a mikrobák szokásos biológiai folyamatait a hidrogéntermelés sebességének növelése érdekében.

Termokémiai vízbontás

A termokémiai vízbontási folyamatok magas hőmérsékletet (500-2000°C) használnak fel egy sor kémiai reakció elindítására, amelyek során hidrogén keletkezik. A folyamat során felhasznált vegyi anyagokat minden egyes ciklusban újra felhasználják, így egy zárt körfolyamat jön létre, amely csak vizet fogyaszt, és hidrogént, illetve oxigént termel. A vízbontáshoz szükséges magas hőmérsékletet a napfény koncentrálásával állítják elő, de egyébként a nukleáris energiával történő hidrogéngyártás is ezt a módszert alkalmazza.

A hidrogén előállítására számos különböző termokémiai vízbontó ciklus ismert, amelyek mindegyike különböző működési feltételekkel, műszaki kihívásokkal és hidrogéntermelési lehetőségekkel rendelkezik. A szakirodalomban több mint 300 különböző metódust írnak le.

A termokémiai vízbontó ciklusok két példáját, a „közvetlen” kétlépcsős cérium-oxid termikus ciklust, és a „hibrid” réz-klorid ciklust az alábbi ábra szemlélteti. A közvetlen ciklusok jellemzően kevésbé bonyolultak, kevesebb lépést tartalmaznak, de a bonyolultabb hibrid ciklusokhoz képest magasabb üzemi hőmérsékletet igényelnek.

Kép: energy.gov

A kereskedelmi szempontból is életképes termokémiai ciklusok és reaktorok kutatása, fejlesztése és demonstrációja azonban továbbra is kihívást jelent:

  • Javítani kell a termokémiai ciklusokban használt reaktánsanyagok hatékonyságát és tartósságát.
  • Hatékony és robusztus reaktorkonstrukciókat kell kifejleszteni, amelyek kompatibilisek a magas hőmérsékletekkel és a hőciklusokkal.
  • A termokémiai napkollektoros rendszerek esetében csökkenteni kell a koncentráló tükörrendszerek költségeit.

A koncentrált napenergia-technológiákkal és az újonnan megjelenő napenergiás üzemanyag-előállítási technológiákkal való szinergiák kihasználása azonban komoly lehetőségekkel kecsegteti a kutatókat. A termokémiai vízbontás előnye, hogy a napfénynek olyan spektrumait is képes hasznosítani, amit a fotovoltaikus panelek nem.

Fotoelektrokémiai és fotokatalitikus vízbontás

A FEK eljárás során félvezető anyagokat használnak a vízmolekulák bontására. Ezek a félvezető anyagok hasonlóak a fotovoltaikus napelemekben használtakhoz, de a FEK alkalmazásokban vízalapú elektrolitba vannak merítve. A félvezető fotoelektródában a fény hatására elektron-lyuk párok keletkeznek, ezeket a töltéshordozókat azonban nem áram formájában „nyerik ki” a rendszerből (mint egy napelemnél), hanem redukciós és oxidációs kémiai reakciókat hajtanak végre.

A fotokatalitikus vízbontás is hasonló elven működik, de itt nanoméretű fotoaktív részecskéket alkalmaznak, amelyek az elektrolittal együtt egy iszapszerű elegyet alkotnak.

Mindkét megközelítésnek megvannak a maga előnyei és kihívásai, de az elmondható, hogy a panelrendszereket vizsgálták a legszélesebb körben, a bevált fotovoltaikus paneltechnológiákkal való hasonlóság miatt.

A következő ábra a FEK-reaktor lehetséges tervezési sémáit mutatja. Az a)-val jelölt rész egy síkágyas, illetve egy csöves reaktort (amely koncentrálja is a napfényt egy elektródára) mutat be, míg a b) egy műanyag „zacskóval” fedett, kétágyas részecskés reaktort ábrázol.

Kép: energy.gov

A piaci életképességhez a hatékonyság, a tartósság és a költségek folyamatos javítására van szükség. A FEK anyagok, eszközök és rendszerek fejlesztése azonban jelentős előrehaladást ért el az elmúlt években, így a közeljövőben számos megoldás piacra lépése várható.

A fotoelektrokémiai vízbontás előnye, hogy hatékonyabb és potenciálisan olcsóbb megoldás lehet az elektrolízishez képest.

Ez még nagy durranás lehet: érkezik a hidrogént termelő napelem

A hidrogénről további, sokkal bővebb információk találhatóak az alábbi oldalunkon.

Hidrogén

Kép: solhyd.org

PGEgaHJlZj0iaHR0cHM6Ly93d3cudm9sdGllLmV1Lz91dG1fc291cmNlPXZpbGxhbnlhdXRvc29rJnV0bV9tZWRpdW09ZW5lcmdpYSZ1dG1fY2FtcGFpZ249cm92YXQiIG9uY2xpY2s9ImphdmFzY3JpcHQ6d2luZG93Lm9wZW4oJ2h0dHBzOi8vd3d3LnZvbHRpZS5ldS8/dXRtX3NvdXJjZT12aWxsYW55YXV0b3NvayZ1dG1fbWVkaXVtPWVuZXJnaWEmdXRtX2NhbXBhaWduPXJvdmF0JywgJ19ibGFuaycsICdub29wZW5lcicpOyByZXR1cm4gZmFsc2U7Ij48cGljdHVyZT48c291cmNlIHNyY3NldD0iaHR0cHM6Ly92aWxsYW55YXV0b3Nvay5odS93cC1jb250ZW50L3VwbG9hZHMvMjAyNC8wNS92b2x0aWUtZW5lcmdpYS0yMDI0LTA5LTAyLmpwZyIgbWVkaWE9IihtaW4td2lkdGg6IDcwMHB4KSI+PGltZyBzcmM9Imh0dHBzOi8vdmlsbGFueWF1dG9zb2suaHUvd3AtY29udGVudC91cGxvYWRzLzIwMjQvMDUvdm9sdGllLWVuZXJnaWEtMjAyNC0wOS0wMi5qcGciIGFsdD0iIj48L3BpY3R1cmU+PC9hPg==

dr. Papp László (Sol Invictus)

Technológiai elemző, és a Villanyautosok.hu csapatának megújuló energiákkal, energiatárolással, illetve piaci trendekkel foglalkozó szakértője. Célja, hogy minél többek számára tegye egyértelművé, hogy a fenntartható jövő gazdaságilag is a legracionálisabb választás.